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Dedicated to Work of Shalva Pkhakadze on the 
Centenary of His Birth

Our goal in this talk is to describe contribution of the Notation Theory of 
Shalva Pkhakadze to the theory of Higher Order Rewrite Systems



Term Rewriting Systems  -- an example

Rewrite rules for Peano arithmetic

• A(x,0) -> x
• A(x,S(y)) -> S(A(x,y))
• M(x,0) -> 0
• M(x,S(y)) -> A(M(x,y), x)

• Numbers: 0, S(0), S(S(0)), …
• Examples of reductions (contraction of redexes)

• M(S0,S0) -> A(M(S0,0),S0) -> A(0,S0) -> SA(0,0) -> S0
• M(S0,S0) -> A(M(S0,0),S0) -> SA(M(S0,0),0) -> SA(0,0) -> S0
• S0 is a normal form (contains no redexes, no further reduction is possible)

Axioms of Peano Arithmetic

• x+0  = x

• x+(y+1) = (x+y)+1

• x*0 = 0

• x*(y+1) = x*y+x



Lambda Calculus

• Formalizes computation; has the same computational power as Turing Machines

• Expressions (terms) are built using two operations:
• Abstraction: λx;       example: λx.M

• Application: (MN), which abbreviates @(M,N)

• Beta rule: (λx.M)N -> (M/x)N
@(λx.M, N) -> (M/x)N

• Substitution
• (λx.x)N -> N

• (λx.y)N -> y

• (λx.(λx.xy)) N -> λx.xy

• (λz.(λx.xy)) N -> λx.xy – renaming of bound variables



Quantifiers in First Order Logic

• Existential quantifier: ∃x.φ(x)

• Universal quantifier:   ∀x.φ(x)

• Expressions are considered as same up to renaming of bound 
variables:
• ∃x.φ(x) ≡ ∃y.φ(y)

• Defined symbols of the form σ a1…an (A1,….,Am) -- B
• Hilbert’s choice operator τ:        ∃aA --- (τx(A)/a) A 
• Exits Unique operator ∃!:            ∃!aA ---- ∃aA∧∀a∀b(A∧(b/a)A→a = b), 



Definition of symbols with binding power

• Need to define rigorous rules to make definition of quantifiers sound 
– avoid any collision between free and bound variables

• Such a definition will allow meta-level reasoning on properties of such 
symbols when considered as rewrite rules

• For example, Boubaki in Elements of Mathematics, Chapters 1 & 2, 
introduced “defined symbols” without a formal definition of what a 
“definition” of a new symbol (a quantifier or a function) is; thus they 
couldn’t prove any general properties of defined symbols and 
extensions of theories with defined symbols. The Notation Theory 
was introduced by Sh. Pkhakadze to fix this situation



Definition of contracting symbols of type IV

• Let a1,...,am be metavariables such that each ai ranges over the class of all 
predicate or object quantifier variables or letters; and let A1,...,An be 
metavariables such that each Aj ranges over the class of all formulas or all terms. 
The definition of a contracted symbol σ of type IV has a form 

σa1 ...amA1 ...An --- B 

where a1,...,am,A1,...,An are metavariables, each ranged over a class   of 
quantifier letters or forms (as specified above), and B is a form constructed using 
the main and already introduced contracting symbols, metavariables a1,...,am, 
b1,...bk, and ( / )-substitutions. A system of values a’1...a’m,A’1,...A’n,b’1,...,b’k is 
admissible if b’1,...,b’k are mutually different, are different from a’1,...a’m, do not 
have free occurrences in A’1,...A’n, and do not have (any) occurrences in B.

• Example (exits unique): ∃!aA ---- ∃aA∧∀a∀b(A∧(b/a)A→a = b), 



Definition of contracting symbols of types I-III

• If we require that B contains no ( / )-substitutions, then from 
definitions of types IV we get definitions of type II
• Example (subset operator): ⊆AB ---- ∀b(b∈A→b∈B).

• And if we require that the list of additional metavariables b1,...,bk be 
empty, we get definitions of types I and III from the definitions of 
types II and IV, respectively.
• There are also contracting symbols of types IV’ and II’; their definitions are 

slight adaptations (and do not change the expressive power) of definitions of 
types IV and II, respectively; and there are also definitions of a few other 
types designed to illustrate that relaxing constraints on definitions of types I-
IV would result in loss of many desirable properties of contracted symbols



Some work on theory of contracting symbols 
and extensions
• Khimur Rukhaia -- The description of a derived formal mathematical 

T∗ theory, 1983

• Vakhtang Pkhakadze -- Some properties of α-processes, 1988

• Vakhtang Pkhakadze -- Substitution theorems and connection 
between δ-processes and α-processes, 1988

• Zurab Khasidashvili – Expression Reduction Systems, 1990



How are Expression Reduction Systems (ERSs) 
Different?
• The essential difference is in the left-hand sides of definitions (viewed 

as rules): In ERSs, the LHS may be expressions just like the RHS 
expression B except they cannot contain substitution operation ( / )

• This generality in the LHS allows more computations to be expressed
• The l-Calculus and Term Rewriting Systems are a special case



Some History of rewrite systems with bound 
variables and substitution (with no aim or claim of completeness….)

• Main motivating examples/theories
• Thirst Order Logic
• l-calculus – Alonso Church, The Calculi of Lambda Conversion, 1941

• The earliest formalizms (with partial power for rewriting)
• Shalva Pkhakadze – 1977, Some Problems of the Notation Theory
• Peter Aczel – 1978, a General Church-Rosser Theorem

• First full formalization, with proofs of many basic theorems on 
confluence and normalization
• Jan Willem Klop – 1980, Combinatory Reduction Systems, PhD thesis



Some other well known formalizms

• Other popular formalizms
• Zurab Khasidashvili – Expression Reduction Systems, 1990
• Tobias Nipkow -- High-Order Rewrite Systems – Tobias Nipkow, 1991
• David Wolfram – Higher-Order Term Rewriting Systems, 1993
• Vincent Van Oostrom and Femke van Raamsdonk – Higher-Order Rewrite 

Systems, 1994
• Julien Forest and Delia Kesner -- Expression reduction systems with patterns, 

2003
• ....
• Many more formalizms exist for combining Term Rewriting and λ-Calculus
• A big body of related research is on Explicit Substitution aiming and defining / 

implementing substitution as Term Rewriting 



Some of the Basic Questions for Rewrite 
Systems

• Confluence

• Weak and strong 
normalization

• Normalizing and 
Perpetual strategies

• Optimal Reduction

A(0,S(0))

S(0)

S(A(0,0))A(S(0), 0)

Peano Arithmetic with 
commutativity rule for addition:
A(x,y) -> A(y,x)



Confluence

• Confluence (or Church-Rosser):
Given two computations t ->> s1 
and t ->> s2 from the same 
expression t, there exist 
reductions s1 ->> s and s2 ->> s 
to the same expression s

• Confluence implies uniqueness
of a normal form for t (final 
result of computation of t) if a 
normal form exists

t

s

s2s1



Orthogonal rewrite systems

• Left-liner systems where redex
patterns do not overlap are called 
orthogonal.

• Orthogonal rewrite systems are 
confluent

• Example: Consider rule 
f(f(x)) -> b 

and consider expression 
t = f(f(f(a)))

There are two redexes in t and 
their patterns overlap (form a 
critical pair)

f

f

f

a

f

b
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Weak and Strong Normalization

• Weak Normalization: does an 
expression t have a normal 
form?

• Strong Normalization: Do all 
reductions (computations) of a 
term t terminate?

• Weak and strong normalization 
are defined for the Rewrite 
Systems – is any expression on 
the system weakly/strongly 
normalizing?

• Let w = lx.(xx)lx(xx) and v = (ly. 
z)w. Then:

• w has an infinite reduction w -> 
w -> w -> …..

• Thus v has an infinite reduction 
contracting the subexpression w 
within v: v -> v -> v ->….

• W foes not have a normal form 
but v does: v = (ly. z)w -> z
• W is erased because variable y 

does not occur in expression z



Normalizing and Perpetual Strategies

• For expressions that have a normal 
form and also have an infinite 
reduction (computation):
• Normalizing strategies: is there a way 

to choose the order of computations 
that guarantees reaching a normal 
form?

• Optimal reductions: How can we 
construct a normal form in least 
number of steps / with a minimal 
cost? Sharing of redexes or Graph 
rewriting is often used.

• Perpetual strategies: is there a way to 
choose the order of computations 
that guarantees construction of an 
infinite reduction? 

• An example normalizing strategy in 
orthogonal systems:
• Parallel outermost strategy is 

normalizing: The strategy that 
contracts all outermost redexes in a 
term is normalizing

• Outermost-fair strategy is 
normalizing: every outermost redex
must eventually be contracted.

• For Rewrite Systems where the rules 
have the form of contracting symbols 
of types I-IV, innermost needed 
reductions are the shortest and can 
be computed effectively



Thank You


